Antisense oligonucleotide inhibition of tumor necrosis factor receptor 1 protects the liver from radiation-induced apoptosis.

نویسندگان

  • Xiao W Huang
  • Jiong Yang
  • Aleksandar F Dragovic
  • Hong Zhang
  • Theodore S Lawrence
  • Ming Zhang
چکیده

PURPOSE Liver damage by radiation limits its efficacy in cancer treatment. As radiation can generate apoptotic signals, we wished to examine the potential to protect the liver by inhibiting apoptosis through two key mediators, FAS and tumor necrosis factor receptor 1 (TNFR1). EXPERIMENTAL DESIGN Radiation-induced liver damage was assessed by serum aspartate aminotransferase and alanine aminotransferase, hepatocyte micronucleus formation, and apoptosis assays (terminal nucleotidyl transferase-mediated nick end labeling and caspase-3 cleavage) in mice. Protection was evaluated by pretreating mice with antisense oligonucleotides (ASO) for FAS or TNFR1 prior to radiation. TNF-alpha production in liver and in Kupffer cells were determined by ELISA. RESULTS Radiation increased liver FAS and TNFR1 transcription in a dose- and time-dependent manner (maximized at 25 Gy and 8 hours postirradiation). Pretreatment with ASOs for FAS and TNFR1 resulted in the inhibition of liver FAS and TNFR1 by 78% and 59%, respectively. Inductions of serum aspartate aminotransferase and alanine aminotransferase were observed at 2 hours after radiation and could be reduced by pretreating mice with ASO for TNFR1 but not FAS or control oligonucleotide. Radiation-induced liver apoptosis (terminal nucleotidyl transferase-mediated nick end labeling staining and caspase-3 activation on Western blot) and hepatocyte micronucleus formation were reduced by pretreatment with ASO for TNFR1. In addition, radiation stimulated TNF-alpha production both in irradiated liver and in cultured Kupffer cells by >50% and 100%, respectively. CONCLUSION This study suggests that ionizing radiation activates apoptotic signaling through TNFR1 in the liver, and thus provides a rationale for anti-TNFR1 apoptotic treatment to prevent radiation-induced liver injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of the tumor necrosis factor-alpha pathway is radioprotective for the lung.

PURPOSE Radiation-induced lung toxicity limits the delivery of high-dose radiation to thoracic tumors. Here, we investigated the potential of inhibiting the tumor necrosis factor-alpha (TNF-alpha) pathway as a novel radioprotection strategy. EXPERIMENTAL DESIGN Mouse lungs were irradiated with various doses and assessed at varying times for TNF-alpha production. Lung toxicity was measured by ...

متن کامل

1,25-Dihydroxyvitamin D3 protects human leukemic cells from tumor necrosis factor-induced apoptosis via inactivation of cytosolic phospholipase A2.

The mechanism by which tumor necrosis factor (TNF) induces death of cancer cells appears to involve the activation of cytosolic phospholipase A2 (cPLA2). U937 human leukemic cells treated with 1,25-dihydroxyvitamin D3 [1,25(OH)2D3; 10(-8) M] become resistant to TNF, an effect that is independent of cell cycle status and expression of TNF receptors or BCL-2. In this study, TNF produced a dose- a...

متن کامل

Phorbol 12-myristate 13-acetate protects against tumor necrosis factor (TNF)-induced necrotic cell death by modulating the recruitment of TNF receptor 1-associated death domain and receptor-interacting protein into the TNF receptor 1 signaling complex: Implication for the regulatory role of protein kinase C.

Protein kinase C (PKC) triggers cellular signals that regulate proliferation or death in a cell- and stimulus-specific manner. Although previous studies have demonstrated that activation of PKC with phorbol 12-myristate 13-acetate (PMA) protects cells from apoptosis induced by a number of mechanisms, including death receptor ligation, little is known about the effect or mechanism of PMA in the ...

متن کامل

اثر سایتوتوکسیک مهارکنندگان زیرواحد کاتالیتیکی (hTERT) و نوکلئوتیدی (hTERC) تلومراز در سلول های لوسمی پرومیلوسیتیک حاد

Background and purpose: Telomerase activity has a major role in acute promyelocytic leukemia (APL). It also has a critical role in disease recurrence. This research aimed at studying the cytotoxic effects of telomerase inhibition using oligonucleotide-based molecule against human telomerase RNA template (hTERC antisense) and non-nucleoside small molecule targeting catalytic subunit (BIBR5132) o...

متن کامل

Long noncoding RNA hypoxia-inducible factor 1 alpha-antisense RNA 1 promotes tumor necrosis factor-α-induced apoptosis through caspase 3 in Kupffer cells

Kupffer cells (KCs) play a crucial role in the pathogenesis of acute-on-chronic liver failure (ACLF) which is characterized by acute and severe disease in patients with preexisting liver disease and shows high mortality. Long noncoding RNAs (lncRNAs) are recently found to be involved in gene regulation. However, the mechanisms of how KCs are regulated by inflammatory factors, tumor necrosis fac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Clinical cancer research : an official journal of the American Association for Cancer Research

دوره 12 9  شماره 

صفحات  -

تاریخ انتشار 2006